cs.AI updates on arXiv.org 12小时前
U-PINet: End-to-End Hierarchical Physics-Informed Learning With Sparse Graph Coupling for 3D EM Scattering Modeling
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出U-PINet,一种基于深度学习的物理信息网络,用于高效进行电磁散射建模,克服传统方法的局限,实现高精度与高效计算。

arXiv:2508.03774v1 Announce Type: cross Abstract: Electromagnetic (EM) scattering modeling is critical for radar remote sensing, however, its inherent complexity introduces significant computational challenges. Traditional numerical solvers offer high accuracy, but suffer from scalability issues and substantial computational costs. Pure data-driven deep learning approaches, while efficient, lack physical constraints embedding during training and require extensive labeled data, limiting their applicability and generalization. To overcome these limitations, we propose a U-shaped Physics-Informed Network (U-PINet), the first fully deep-learning-based, physics-informed hierarchical framework for computational EM designed to ensure physical consistency while maximizing computational efficiency. Motivated by the hierarchical decomposition strategy in EM solvers and the inherent sparsity of local EM coupling, the U-PINet models the decomposition and coupling of near- and far-field interactions through a multiscale processing neural network architecture, while employing a physics-inspired sparse graph representation to efficiently model both self- and mutual- coupling among mesh elements of complex $3$-Dimensional (3D) objects. This principled approach enables end-to-end multiscale EM scattering modeling with improved efficiency, generalization, and physical consistency. Experimental results showcase that the U-PINet accurately predicts surface current distributions, achieving close agreement with traditional solver, while significantly reducing computational time and outperforming conventional deep learning baselines in both accuracy and robustness. Furthermore, our evaluations on radar cross section prediction tasks confirm the feasibility of the U-PINet for downstream EM scattering applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

U-PINet 电磁散射 深度学习 物理信息网络 建模效率
相关文章