cs.AI updates on arXiv.org 6小时前
Tool Unlearning for Tool-Augmented LLMs
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出工具辅助大语言模型(LLM)工具遗忘(tool unlearning)这一新任务,并提出名为ToolDelete的首个解决方案,以应对知识移除、优化成本和评估指标等挑战,实验证明该方法能有效实现工具遗忘。

arXiv:2502.01083v2 Announce Type: replace-cross Abstract: Tool-augmented large language models (LLMs) are often trained on datasets of query-response pairs, which embed the ability to use tools or APIs directly into the parametric knowledge of LLMs. Tool-augmented LLMs need the ability to forget learned tools due to security vulnerabilities, privacy regulations, or tool deprecations. However, ``tool unlearning'' has not been investigated in unlearning literature. We introduce this novel task, which requires addressing distinct challenges compared to traditional unlearning: knowledge removal rather than forgetting individual samples, the high cost of optimizing LLMs, and the need for principled evaluation metrics. To bridge these gaps, we propose ToolDelete, the first approach for unlearning tools from tool-augmented LLMs. It implements three key properties to address the above challenges for effective tool unlearning and introduces a new membership inference attack (MIA) model for effective evaluation. Extensive experiments on multiple tool learning datasets and tool-augmented LLMs show that ToolDelete effectively unlearns randomly selected tools, while preserving the LLM's knowledge on non-deleted tools and maintaining performance on general tasks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

工具辅助LLM 工具遗忘 知识移除 ToolDelete 评估指标
相关文章