cs.AI updates on arXiv.org 8小时前
Recommendation with Generative Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨深度生成模型(DGMs)在推荐系统中的应用,包括其分类、影响与风险,并介绍了一种针对DGMs的全新分类体系。

arXiv:2409.15173v1 Announce Type: cross Abstract: Generative models are a class of AI models capable of creating new instances of data by learning and sampling from their statistical distributions. In recent years, these models have gained prominence in machine learning due to the development of approaches such as generative adversarial networks (GANs), variational autoencoders (VAEs), and transformer-based architectures such as GPT. These models have applications across various domains, such as image generation, text synthesis, and music composition. In recommender systems, generative models, referred to as Gen-RecSys, improve the accuracy and diversity of recommendations by generating structured outputs, text-based interactions, and multimedia content. By leveraging these capabilities, Gen-RecSys can produce more personalized, engaging, and dynamic user experiences, expanding the role of AI in eCommerce, media, and beyond. Our book goes beyond existing literature by offering a comprehensive understanding of generative models and their applications, with a special focus on deep generative models (DGMs) and their classification. We introduce a taxonomy that categorizes DGMs into three types: ID-driven models, large language models (LLMs), and multimodal models. Each category addresses unique technical and architectural advancements within its respective research area. This taxonomy allows researchers to easily navigate developments in Gen-RecSys across domains such as conversational AI and multimodal content generation. Additionally, we examine the impact and potential risks of generative models, emphasizing the importance of robust evaluation frameworks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度生成模型 推荐系统 AI应用
相关文章