cs.AI updates on arXiv.org 8小时前
Delving Deeper Into Astromorphic Transformers
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了在神经形态计算中融合星形胶质细胞的关键作用,模拟Transformer的自注意力机制,通过生物可塑性和非线性效应建模,评估其在机器学习任务中的表现,包括情感和图像分类,以及自然语言生成。

arXiv:2312.10925v3 Announce Type: cross Abstract: Preliminary attempts at incorporating the critical role of astrocytes - cells that constitute more than 50\% of human brain cells - in brain-inspired neuromorphic computing remain in infancy. This paper seeks to delve deeper into various key aspects of neuron-synapse-astrocyte interactions to mimic self-attention mechanisms in Transformers. The cross-layer perspective explored in this work involves bioplausible modeling of Hebbian and presynaptic plasticities in neuron-astrocyte networks, incorporating effects of non-linearities and feedback along with algorithmic formulations to map the neuron-astrocyte computations to self-attention mechanism and evaluating the impact of incorporating bio-realistic effects from the machine learning application side. Our analysis on sentiment and image classification tasks (IMDB and CIFAR10 datasets) highlights the advantages of Astromorphic Transformers, offering improved accuracy and learning speed. Furthermore, the model demonstrates strong natural language generation capabilities on the WikiText-2 dataset, achieving better perplexity compared to conventional models, thus showcasing enhanced generalization and stability across diverse machine learning tasks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经形态计算 星形胶质细胞 Transformer 自注意力机制 机器学习
相关文章