cs.AI updates on arXiv.org 6小时前
Large Language Model's Multi-Capability Alignment in Biomedical Domain
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

BalancedBio框架通过理论支撑,实现参数高效生物医学推理,解决领域特定AI对齐的多能力整合问题,包括医疗知识合成生成和能力感知策略优化,实现高准确性和安全性。

arXiv:2508.04278v1 Announce Type: new Abstract: BalancedBio is a theoretically grounded framework for parameter-efficient biomedical reasoning, addressing multi-capability integration in domain-specific AI alignment. It establishes the Biomedical Multi-Capability Convergence Theorem, proving orthogonal gradient spaces are essential to prevent capability interference for safe deployment. Key innovations include: (1) Medical Knowledge Grounded Synthetic Generation (MKGSG), extending Source2Synth with clinical workflow constraints and medical ontology validation for factual accuracy and safety; and (2) Capability Aware Group Relative Policy Optimization, deriving optimal hybrid reward weighting to maintain orthogonality in RL, using a reward model with rule-based and model-based scores adapted to biomedical tasks. Mathematical analysis proves Pareto-optimal convergence, preserving performance across capabilities. It achieves state-of-the-art results in its parameter class: domain expertise (80.95% BIOMED-MMLU, +15.32% over baseline), reasoning (61.94%, +7.75%), instruction following (67.95%, +6.44%), and integration (86.7%, +18.5%). Theoretical safety guarantees include bounds on capability preservation and clinical accuracy. Real-world deployment yields 78% cost reduction, 23% improved diagnostic accuracy, and 89% clinician acceptance. This work provides a principled methodology for biomedical AI alignment, enabling efficient reasoning with essential safety and reliability, with the 0.5B model version to be released.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

BalancedBio 生物医学推理 AI对齐 能力整合
相关文章