cs.AI updates on arXiv.org 6小时前
PRISM: Lightweight Multivariate Time-Series Classification through Symmetric Multi-Resolution Convolutional Layers
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出PRISM模型,通过多通道分辨率信息对称模块实现高效多变量时间序列分类,在多个基准测试中表现优异,参数和计算量远低于传统模型。

arXiv:2508.04503v1 Announce Type: cross Abstract: Multivariate time-series classification is pivotal in domains ranging from wearable sensing to biomedical monitoring. Despite recent advances, Transformer- and CNN-based models often remain computationally heavy, offer limited frequency diversity, and require extensive parameter budgets. We propose PRISM (Per-channel Resolution-Informed Symmetric Module), a convolutional-based feature extractor that applies symmetric finite-impulse-response (FIR) filters at multiple temporal scales, independently per channel. This multi-resolution, per-channel design yields highly frequency-selective embeddings without any inter-channel convolutions, greatly reducing model size and complexity. Across human-activity, sleep-stage and biomedical benchmarks, PRISM, paired with lightweight classification heads, matches or outperforms leading CNN and Transformer baselines, while using roughly an order of magnitude fewer parameters and FLOPs. By uniting classical signal processing insights with modern deep learning, PRISM offers an accurate, resource-efficient solution for multivariate time-series classification.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

PRISM 多变量时间序列 分类 深度学习 信号处理
相关文章