cs.AI updates on arXiv.org 8小时前
Cloud Model Characteristic Function Auto-Encoder: Integrating Cloud Model Theory with MMD Regularization for Enhanced Generative Modeling
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为CMCFAE的生成模型,结合云模型与WAE框架,提高复杂数据分布的建模精度。与传统方法相比,CMCFAE采用云模型先验,增强了模型对复杂数据的建模能力,并通过在MNIST、FashionMNIST、CIFAR-10和CelebA数据集上的实验验证了其优越性。

arXiv:2508.04447v1 Announce Type: cross Abstract: We introduce Cloud Model Characteristic Function Auto-Encoder (CMCFAE), a novel generative model that integrates the cloud model into the Wasserstein Auto-Encoder (WAE) framework. By leveraging the characteristic functions of the cloud model to regularize the latent space, our approach enables more accurate modeling of complex data distributions. Unlike conventional methods that rely on a standard Gaussian prior and traditional divergence measures, our method employs a cloud model prior, providing a more flexible and realistic representation of the latent space, thus mitigating the homogenization observed in reconstructed samples. We derive the characteristic function of the cloud model and propose a corresponding regularizer within the WAE framework. Extensive quantitative and qualitative evaluations on MNIST, FashionMNIST, CIFAR-10, and CelebA demonstrate that CMCFAE outperforms existing models in terms of reconstruction quality, latent space structuring, and sample diversity. This work not only establishes a novel integration of cloud model theory with MMD-based regularization but also offers a promising new perspective for enhancing autoencoder-based generative models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

CMCFAE 生成模型 WAE 云模型 数据分布建模
相关文章