cs.AI updates on arXiv.org 08月06日 12:38
Pay What LLM Wants: Can LLM Simulate Economics Experiment with 522 Real-human Persona?
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过522个真实人物数据,评估大型语言模型在模拟人类经济决策方面的能力,发现其在群体行为预测上表现良好,但个体预测存在局限。

arXiv:2508.03262v1 Announce Type: cross Abstract: Recent advances in Large Language Models (LLMs) have generated significant interest in their capacity to simulate human-like behaviors, yet most studies rely on fictional personas rather than actual human data. We address this limitation by evaluating LLMs' ability to predict individual economic decision-making using Pay-What-You-Want (PWYW) pricing experiments with real 522 human personas. Our study systematically compares three state-of-the-art multimodal LLMs using detailed persona information from 522 Korean participants in cultural consumption scenarios. We investigate whether LLMs can accurately replicate individual human choices and how persona injection methods affect prediction performance. Results reveal that while LLMs struggle with precise individual-level predictions, they demonstrate reasonable group-level behavioral tendencies. Also, we found that commonly adopted prompting techniques are not much better than naive prompting methods; reconstruction of personal narrative nor retrieval augmented generation have no significant gain against simple prompting method. We believe that these findings can provide the first comprehensive evaluation of LLMs' capabilities on simulating economic behavior using real human data, offering empirical guidance for persona-based simulation in computational social science.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 经济行为 模拟研究
相关文章