arXiv:2508.03104v1 Announce Type: cross Abstract: Contrastive learning (CL) has become a dominant paradigm for self-supervised hypergraph learning, enabling effective training without costly labels. However, node entities in real-world hypergraphs are often associated with rich textual information, which is overlooked in prior works. Directly applying existing CL-based methods to such text-attributed hypergraphs (TAHGs) leads to three key limitations: (1) The common use of graph-agnostic text encoders overlooks the correlations between textual content and hypergraph topology, resulting in suboptimal representations. (2) Their reliance on random data augmentations introduces noise and weakens the contrastive objective. (3) The primary focus on node- and hyperedge-level contrastive signals limits the ability to capture long-range dependencies, which is essential for expressive representation learning. Although HyperBERT pioneers CL on TAHGs, its co-training paradigm suffers from poor scalability. To fill the research gap, we introduce HiTeC, a two-stage hierarchical contrastive learning framework with semantic-aware augmentation for scalable and effective self-supervised learning on TAHGs. In the first stage, we pre-train the text encoder with a structure-aware contrastive objective to overcome the graph-agnostic nature of conventional methods. In the second stage, we introduce two semantic-aware augmentation strategies, including prompt-enhanced text augmentation and semantic-aware hyperedge drop, to facilitate informative view generation. Furthermore, we propose a multi-scale contrastive loss that extends existing objectives with an $s$-walk-based subgraph-level contrast to better capture long-range dependencies. By decoupling text encoder pretraining from hypergraph contrastive learning, this two-stage design enhances scalability without compromising representation quality. Extensive experiments confirm the effectiveness of HiTeC.