cs.AI updates on arXiv.org 3小时前
VFLAIR-LLM: A Comprehensive Framework and Benchmark for Split Learning of LLMs
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为VFLAIR-LLM的轻量级分片学习框架,旨在解决在资源受限环境下隐私保护地使用大型语言模型的问题,并提供了针对攻击和防御的标准模块及基准测试。

arXiv:2508.03097v1 Announce Type: cross Abstract: With the advancement of Large Language Models (LLMs), LLM applications have expanded into a growing number of fields. However, users with data privacy concerns face limitations in directly utilizing LLM APIs, while private deployments incur significant computational demands. This creates a substantial challenge in achieving secure LLM adaptation under constrained local resources. To address this issue, collaborative learning methods, such as Split Learning (SL), offer a resource-efficient and privacy-preserving solution for adapting LLMs to private domains. In this study, we introduce VFLAIR-LLM (available at https://github.com/FLAIR-THU/VFLAIR-LLM), an extensible and lightweight split learning framework for LLMs, enabling privacy-preserving LLM inference and fine-tuning in resource-constrained environments. Our library provides two LLM partition settings, supporting three task types and 18 datasets. In addition, we provide standard modules for implementing and evaluating attacks and defenses. We benchmark 5 attacks and 9 defenses under various Split Learning for LLM(SL-LLM) settings, offering concrete insights and recommendations on the choice of model partition configurations, defense strategies, and relevant hyperparameters for real-world applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 分片学习 隐私保护
相关文章