arXiv:2508.02956v1 Announce Type: cross Abstract: Conventional machine learning approaches accelerate inorganic materials design via accurate property prediction and targeted material generation, yet they operate as single-shot models limited by the latent knowledge baked into their training data. A central challenge lies in creating an intelligent system capable of autonomously executing the full inorganic materials discovery cycle, from ideation and planning to experimentation and iterative refinement. We introduce SparksMatter, a multi-agent AI model for automated inorganic materials design that addresses user queries by generating ideas, designing and executing experimental workflows, continuously evaluating and refining results, and ultimately proposing candidate materials that meet the target objectives. SparksMatter also critiques and improves its own responses, identifies research gaps and limitations, and suggests rigorous follow-up validation steps, including DFT calculations and experimental synthesis and characterization, embedded in a well-structured final report. The model's performance is evaluated across case studies in thermoelectrics, semiconductors, and perovskite oxides materials design. The results demonstrate the capacity of SparksMatter to generate novel stable inorganic structures that target the user's needs. Benchmarking against frontier models reveals that SparksMatter consistently achieves higher scores in relevance, novelty, and scientific rigor, with a significant improvement in novelty across multiple real-world design tasks as assessed by a blinded evaluator. These results demonstrate SparksMatter's unique capacity to generate chemically valid, physically meaningful, and creative inorganic materials hypotheses beyond existing materials knowledge.