cs.AI updates on arXiv.org 17小时前
Beyond Least Squares: Robust Regression Transformer (R2T)
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新型混合神经网络架构,结合神经网络和符号方程处理不对称结构噪声,在回归分析中表现优异,有效提高回归精度。

arXiv:2508.02874v1 Announce Type: cross Abstract: Robust regression techniques rely on least-squares optimization, which works well for Gaussian noise but fails in the presence of asymmetric structured noise. We propose a hybrid neural-symbolic architecture where a transformer encoder processes numerical sequences, a compression NN predicts symbolic parameters, and a fixed symbolic equation reconstructs the original sequence. Using synthetic data, the training objective is to recover the original sequence after adding asymmetric structured noise, effectively learning a symbolic fit guided by neural parameter estimation. Our model achieves a median regression MSE of 6e-6 to 3.5e-5 on synthetic wearable data, which is a 10-300 times improvement when compared with ordinary least squares fit and robust regression techniques such as Huber loss or SoftL1.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络 回归分析 不对称结构噪声 混合架构 回归精度
相关文章