cs.AI updates on arXiv.org 5小时前
Context-Adaptive Multi-Prompt LLM Embedding for Vision-Language Alignment
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

提出一种名为“上下文自适应多提示嵌入”的新方法,通过引入多个结构化提示,增强视觉语言对比学习中的语义表示,并在图像-文本和视频-文本检索基准上取得显著提升。

arXiv:2508.02762v1 Announce Type: cross Abstract: We propose Context-Adaptive Multi-Prompt Embedding, a novel approach to enrich semantic representations in vision-language contrastive learning. Unlike standard CLIP-style models that rely on a single text embedding, our method introduces multiple structured prompts, each containing a distinct adaptive token that captures diverse semantic aspects of the input text. We process all prompts jointly in a single forward pass. The resulting prompt embeddings are combined into a unified text representation, enabling semantically richer alignment with visual features. To further promote semantic diversity and representation quality, we incorporate a diversity regularization loss and a negation-aware loss, encouraging specialization across prompts and improving contrastive discrimination. Our method achieves consistent improvements on both image-text and video-text retrieval benchmarks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

视觉语言对比学习 多提示嵌入 语义表示 图像检索 视频检索
相关文章