cs.AI updates on arXiv.org 3小时前
Who Gets Cited? Gender- and Majority-Bias in LLM-Driven Reference Selection
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过实验研究LLMs在参考选择中引入的性别偏见,发现LLMs可能加剧学术领域的性别不平等,并提出缓解策略。

arXiv:2508.02740v1 Announce Type: cross Abstract: Large language models (LLMs) are rapidly being adopted as research assistants, particularly for literature review and reference recommendation, yet little is known about whether they introduce demographic bias into citation workflows. This study systematically investigates gender bias in LLM-driven reference selection using controlled experiments with pseudonymous author names. We evaluate several LLMs (GPT-4o, GPT-4o-mini, Claude Sonnet, and Claude Haiku) by varying gender composition within candidate reference pools and analyzing selection patterns across fields. Our results reveal two forms of bias: a persistent preference for male-authored references and a majority-group bias that favors whichever gender is more prevalent in the candidate pool. These biases are amplified in larger candidate pools and only modestly attenuated by prompt-based mitigation strategies. Field-level analysis indicates that bias magnitude varies across scientific domains, with social sciences showing the least bias. Our findings indicate that LLMs can reinforce or exacerbate existing gender imbalances in scholarly recognition. Effective mitigation strategies are needed to avoid perpetuating existing gender disparities in scientific citation practices before integrating LLMs into high-stakes academic workflows.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 性别偏见 学术引用 缓解策略
相关文章