arXiv:2508.03661v1 Announce Type: new Abstract: Computational scientific discovery increasingly relies on algorithms to process complex data and identify meaningful patterns - yet faces persistent challenges in gravitational-wave signal identification. While existing algorithmic approaches like matched filtering (MF) and deep neural networks (DNNs) have achieved partial success, their limitations directly stem from fundamental limitations: MF's excessive computational demands arise from its reliance on predefined theoretical waveform templates, while DNNs' black-box architectures obscure decision logic and introduce hidden biases. We propose Evolutionary Monte Carlo Tree Search (Evo-MCTS), a framework that addresses these limitations through systematic algorithm space exploration guided by domain-aware physical constraints. Our approach combines tree-structured search with evolutionary optimization and large language model heuristics to create interpretable algorithmic solutions. Our Evo-MCTS framework demonstrates substantial improvements, achieving a 20.2\% improvement over state-of-the-art gravitational wave detection algorithms on the MLGWSC-1 benchmark dataset. High-performing algorithm variants consistently exceed thresholds. The framework generates human-interpretable algorithmic pathways that reveal distinct performance patterns. Beyond performance improvements, our framework discovers novel algorithmic combinations, thereby establishing a transferable methodology for automated algorithmic discovery across computational science domains.