cs.AI updates on arXiv.org 3小时前
PentestJudge: Judging Agent Behavior Against Operational Requirements
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为PentestJudge的渗透测试评估系统,利用大型语言模型(LLM)对渗透测试代理的操作进行评估,并通过树状结构将渗透测试任务分解为更小的子任务和标准,以实现高效评估。

arXiv:2508.02921v1 Announce Type: new Abstract: We introduce PentestJudge, a system for evaluating the operations of penetration testing agents. PentestJudge is a large language model (LLM)-as-judge with access to tools that allow it to consume arbitrary trajectories of agent states and tool call history to determine whether a security agent's actions meet certain operating criteria that would be impractical to evaluate programmatically. We develop rubrics that use a tree structure to hierarchically collapse the penetration testing task for a particular environment into smaller, simpler, and more manageable sub-tasks and criteria until each leaf node represents simple yes-or-no criteria for PentestJudge to evaluate. Task nodes are broken down into different categories related to operational objectives, operational security, and tradecraft. LLM-as-judge scores are compared to human domain experts as a ground-truth reference, allowing us to compare their relative performance with standard binary classification metrics, such as F1 scores. We evaluate several frontier and open-source models acting as judge agents, with the best model reaching an F1 score of 0.83. We find models that are better at tool-use perform more closely to human experts. By stratifying the F1 scores by requirement type, we find even models with similar overall scores struggle with different types of questions, suggesting certain models may be better judges of particular operating criteria. We find that weaker and cheaper models can judge the trajectories of pentests performed by stronger and more expensive models, suggesting verification may be easier than generation for the penetration testing task. We share this methodology to facilitate future research in understanding the ability of judges to holistically and scalably evaluate the process quality of AI-based information security agents so that they may be confidently used in sensitive production environments.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

渗透测试 大型语言模型 评估系统 F1分数 信息安全性
相关文章