cs.AI updates on arXiv.org 前天 01:08
Neural Predictive Control to Coordinate Discrete- and Continuous-Time Models for Time-Series Analysis with Control-Theoretical Improvements
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出将时间序列问题建模为连续的优化控制问题,通过优化控制动作引导ODE轨迹,提升时间序列分析性能,实验表明该方法在多个时间序列数据集上优于现有方法。

arXiv:2508.01833v1 Announce Type: cross Abstract: Deep sequence models have achieved notable success in time-series analysis, such as interpolation and forecasting. Recent advances move beyond discrete-time architectures like Recurrent Neural Networks (RNNs) toward continuous-time formulations such as the family of Neural Ordinary Differential Equations (Neural ODEs). Generally, they have shown that capturing the underlying dynamics is beneficial for generic tasks like interpolation, extrapolation, and classification. However, existing methods approximate the dynamics using unconstrained neural networks, which struggle to adapt reliably under distributional shifts. In this paper, we recast time-series problems as the continuous ODE-based optimal control problem. Rather than learning dynamics solely from data, we optimize control actions that steer ODE trajectories toward task objectives, bringing control-theoretical performance guarantees. To achieve this goal, we need to (1) design the appropriate control actions and (2) apply effective optimal control algorithms. As the actions should contain rich context information, we propose to employ the discrete-time model to process past sequences and generate actions, leading to a coordinate model to extract long-term temporal features to modulate short-term continuous dynamics. During training, we apply model predictive control to plan multi-step future trajectories, minimize a task-specific cost, and greedily select the optimal current action. We show that, under mild assumptions, this multi-horizon optimization leads to exponential convergence to infinite-horizon solutions, indicating that the coordinate model can gain robust and generalizable performance. Extensive experiments on diverse time-series datasets validate our method's superior generalization and adaptability compared to state-of-the-art baselines.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时间序列分析 连续时间模型 优化控制 Neural ODEs 模型预测控制
相关文章