cs.AI updates on arXiv.org 15小时前
Deep Learning-Driven Prediction of Microstructure Evolution via Latent Space Interpolation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于深度学习的微结构模拟加速方法,通过条件变分自动编码器与插值技术,实现微结构演化的快速预测,有效提升材料设计和成分优化的效率。

arXiv:2508.01822v1 Announce Type: cross Abstract: Phase-field models accurately simulate microstructure evolution, but their dependence on solving complex differential equations makes them computationally expensive. This work achieves a significant acceleration via a novel deep learning-based framework, utilizing a Conditional Variational Autoencoder (CVAE) coupled with Cubic Spline Interpolation and Spherical Linear Interpolation (SLERP). We demonstrate the method for binary spinodal decomposition by predicting microstructure evolution for intermediate alloy compositions from a limited set of training compositions. First, using microstructures from phase-field simulations of binary spinodal decomposition, we train the CVAE, which learns compact latent representations that encode essential morphological features. Next, we use cubic spline interpolation in the latent space to predict microstructures for any unknown composition. Finally, SLERP ensures smooth morphological evolution with time that closely resembles coarsening. The predicted microstructures exhibit high visual and statistical similarity to phase-field simulations. This framework offers a scalable and efficient surrogate model for microstructure evolution, enabling accelerated materials design and composition optimization.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 微结构模拟 材料设计
相关文章