cs.AI updates on arXiv.org 08月05日 19:29
Capturing More: Learning Multi-Domain Representations for Robust Online Handwriting Verification
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出SPECTRUM模型,通过时间-频率协同学习提升在线手写验证性能,实现多域表示学习,并揭示多手写生物特征融合的优越性。

arXiv:2508.01427v1 Announce Type: cross Abstract: In this paper, we propose SPECTRUM, a temporal-frequency synergistic model that unlocks the untapped potential of multi-domain representation learning for online handwriting verification (OHV). SPECTRUM comprises three core components: (1) a multi-scale interactor that finely combines temporal and frequency features through dual-modal sequence interaction and multi-scale aggregation, (2) a self-gated fusion module that dynamically integrates global temporal and frequency features via self-driven balancing. These two components work synergistically to achieve micro-to-macro spectral-temporal integration. (3) A multi-domain distance-based verifier then utilizes both temporal and frequency representations to improve discrimination between genuine and forged handwriting, surpassing conventional temporal-only approaches. Extensive experiments demonstrate SPECTRUM's superior performance over existing OHV methods, underscoring the effectiveness of temporal-frequency multi-domain learning. Furthermore, we reveal that incorporating multiple handwritten biometrics fundamentally enhances the discriminative power of handwriting representations and facilitates verification. These findings not only validate the efficacy of multi-domain learning in OHV but also pave the way for future research in multi-domain approaches across both feature and biometric domains. Code is publicly available at https://github.com/NiceRingNode/SPECTRUM.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SPECTRUM 在线手写验证 多域学习 手写生物特征 时间-频率协同
相关文章