cs.AI updates on arXiv.org 08月05日 19:29
Effective Damage Data Generation by Fusing Imagery with Human Knowledge Using Vision-Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨在人道援助和灾害响应中,如何通过融合视觉语言模型技术,有效生成多样化的图像损伤数据,以解决当前深度学习在数据不平衡、损伤示例稀缺和人工标注不准确等问题上的挑战,提升对建筑、道路和基础设施不同损伤级别场景的分类能力。

arXiv:2508.01380v1 Announce Type: cross Abstract: It is of crucial importance to assess damages promptly and accurately in humanitarian assistance and disaster response (HADR). Current deep learning approaches struggle to generalize effectively due to the imbalance of data classes, scarcity of moderate damage examples, and human inaccuracy in pixel labeling during HADR situations. To accommodate for these limitations and exploit state-of-the-art techniques in vision-language models (VLMs) to fuse imagery with human knowledge understanding, there is an opportunity to generate a diversified set of image-based damage data effectively. Our initial experimental results suggest encouraging data generation quality, which demonstrates an improvement in classifying scenes with different levels of structural damage to buildings, roads, and infrastructures.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

灾害响应 图像损伤数据 深度学习 视觉语言模型 数据生成
相关文章