cs.AI updates on arXiv.org 前天 19:29
SBP-YOLO:A Lightweight Real-Time Model for Detecting Speed Bumps and Potholes
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于YOLOv11的轻量级检测框架SBP-YOLO,优化用于嵌入式部署,有效提升新能源车悬挂系统实时检测速度和准确率。

arXiv:2508.01339v1 Announce Type: cross Abstract: With increasing demand for ride comfort in new energy vehicles, accurate real-time detection of speed bumps and potholes is critical for predictive suspension control. This paper proposes SBP-YOLO, a lightweight detection framework based on YOLOv11, optimized for embedded deployment. The model integrates GhostConv for efficient computation, VoVGSCSPC for multi-scale feature enhancement, and a Lightweight Efficiency Detection Head (LEDH) to reduce early-stage feature processing costs. A hybrid training strategy combining NWD loss, knowledge distillation, and Albumentations-based weather augmentation improves detection robustness, especially for small and distant targets. Experiments show SBP-YOLO achieves 87.0% mAP (outperforming YOLOv11n by 5.8%) and runs at 139.5 FPS on a Jetson AGX Xavier with TensorRT FP16 quantization. The results validate its effectiveness for real-time road condition perception in intelligent suspension systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SBP-YOLO 新能源车 智能悬挂系统 实时检测 YOLOv11
相关文章