cs.AI updates on arXiv.org 前天 19:29
GeHirNet: A Gender-Aware Hierarchical Model for Voice Pathology Classification
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新型AI语音分析框架,通过两阶段处理提升疾病诊断准确性,解决性别差异和数据稀缺问题,在公开数据集上达到最先进水平。

arXiv:2508.01172v1 Announce Type: cross Abstract: AI-based voice analysis shows promise for disease diagnostics, but existing classifiers often fail to accurately identify specific pathologies because of gender-related acoustic variations and the scarcity of data for rare diseases. We propose a novel two-stage framework that first identifies gender-specific pathological patterns using ResNet-50 on Mel spectrograms, then performs gender-conditioned disease classification. We address class imbalance through multi-scale resampling and time warping augmentation. Evaluated on a merged dataset from four public repositories, our two-stage architecture with time warping achieves state-of-the-art performance (97.63\% accuracy, 95.25\% MCC), with a 5\% MCC improvement over single-stage baseline. This work advances voice pathology classification while reducing gender bias through hierarchical modeling of vocal characteristics.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI语音分析 疾病诊断 两阶段框架 性别差异 数据稀缺
相关文章