arXiv:2508.02291v1 Announce Type: cross Abstract: Neural network pruning is a critical compression technique that facilitates the deployment of large-scale neural networks on resource-constrained edge devices, typically by identifying and eliminating redundant or insignificant parameters to reduce computational and memory overhead. This paper proposes the Flexible Automatic Identification and Removal (FAIR)-Pruner, a novel method for neural network structured pruning. Specifically, FAIR-Pruner first evaluates the importance of each unit (e.g., neuron or channel) through the Utilization Score quantified by the Wasserstein distance. To reflect the performance degradation after unit removal, it then introduces the Reconstruction Error, which is computed via the Taylor expansion of the loss function. Finally, FAIR-Pruner identifies superfluous units with negligible impact on model performance by controlling the proposed Tolerance of Difference, which measures differences between unimportant units and those that cause performance degradation. A major advantage of FAIR-Pruner lies in its capacity to automatically determine the layer-wise pruning rates, which yields a more efficient subnetwork structure compared to applying a uniform pruning rate. Another advantage of the FAIR-Pruner is its great one-shot performance without post-pruning fine-tuning. Furthermore, with utilization scores and reconstruction errors, users can flexibly obtain pruned models under different pruning ratios. Comprehensive experimental validation on diverse benchmark datasets (e.g., ImageNet) and various neural network architectures (e.g., VGG) demonstrates that FAIR-Pruner achieves significant model compression while maintaining high accuracy.