arXiv:2508.00970v1 Announce Type: cross Abstract: This study introduces the AI-Educational Development Loop (AI-EDL), a theory-driven framework that integrates classical learning theories with human-in-the-loop artificial intelligence (AI) to support reflective, iterative learning. Implemented in EduAlly, an AI-assisted platform for writing-intensive and feedback-sensitive tasks, the framework emphasizes transparency, self-regulated learning, and pedagogical oversight. A mixed-methods study was piloted at a comprehensive public university to evaluate alignment between AI-generated feedback, instructor evaluations, and student self-assessments; the impact of iterative revision on performance; and student perceptions of AI feedback. Quantitative results demonstrated statistically significant improvement between first and second attempts, with agreement between student self-evaluations and final instructor grades. Qualitative findings indicated students valued immediacy, specificity, and opportunities for growth that AI feedback provided. These findings validate the potential to enhance student learning outcomes through developmentally grounded, ethically aligned, and scalable AI feedback systems. The study concludes with implications for future interdisciplinary applications and refinement of AI-supported educational technologies.