arXiv:2508.00952v1 Announce Type: cross Abstract: Academic laboratories face mounting resource constraints: budgets are tightening, grant overheads are potentially being capped, and the market rate for data-science talent significantly outstrips university compensation. Vibe coding, which is structured, prompt-driven code generation with large language models (LLMs) embedded in reproducible workflows, offers one pragmatic response. It aims to compress the idea-to-analysis timeline, reduce staffing pressure on specialized data roles, and maintain rigorous, version-controlled outputs. This article defines the vibe coding concept, situates it against the current academic resourcing crisis, details a beginner-friendly toolchain for its implementation, and analyzes inherent limitations that necessitate governance and mindful application.