cs.AI updates on arXiv.org 前天 19:10
Reproducibility of Machine Learning-Based Fault Detection and Diagnosis for HVAC Systems in Buildings: An Empirical Study
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文分析了机器学习在建筑能源系统中的应用中的透明度和可重复性问题,发现多数研究因披露不足而不可重复,提出需加强相关指导、培训和期刊政策。

arXiv:2508.00880v1 Announce Type: cross Abstract: Reproducibility is a cornerstone of scientific research, enabling independent verification and validation of empirical findings. The topic gained prominence in fields such as psychology and medicine, where concerns about non - replicable results sparked ongoing discussions about research practices. In recent years, the fast-growing field of Machine Learning (ML) has become part of this discourse, as it faces similar concerns about transparency and reliability. Some reproducibility issues in ML research are shared with other fields, such as limited access to data and missing methodological details. In addition, ML introduces specific challenges, including inherent nondeterminism and computational constraints. While reproducibility issues are increasingly recognized by the ML community and its major conferences, less is known about how these challenges manifest in applied disciplines. This paper contributes to closing this gap by analyzing the transparency and reproducibility standards of ML applications in building energy systems. The results indicate that nearly all articles are not reproducible due to insufficient disclosure across key dimensions of reproducibility. 72% of the articles do not specify whether the dataset used is public, proprietary, or commercially available. Only two papers share a link to their code - one of which was broken. Two-thirds of the publications were authored exclusively by academic researchers, yet no significant differences in reproducibility were observed compared to publications with industry-affiliated authors. These findings highlight the need for targeted interventions, including reproducibility guidelines, training for researchers, and policies by journals and conferences that promote transparency and reproducibility.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器学习 可重复性 研究方法 建筑能源 透明度
相关文章