arXiv:2501.19128v2 Announce Type: replace-cross Abstract: In many real-world scenarios, reward signal for agents are exceedingly sparse, making it challenging to learn an effective reward function for reward shaping. To address this issue, the proposed approach in this paper performs reward shaping not only by utilizing non-zero-reward transitions but also by employing the \emph{Semi-Supervised Learning} (SSL) technique combined with a novel data augmentation to learn trajectory space representations from the majority of transitions, {i.e}., zero-reward transitions, thereby improving the efficacy of reward shaping. Experimental results in Atari and robotic manipulation demonstrate that our method outperforms supervised-based approaches in reward inference, leading to higher agent scores. Notably, in more sparse-reward environments, our method achieves up to twice the peak scores compared to supervised baselines. The proposed double entropy data augmentation enhances performance, showcasing a 15.8\% increase in best score over other augmentation methods