arXiv:2508.00850v1 Announce Type: cross Abstract: How do we learn when to persist, when to let go, and when to shift gears? Gearshift Fellowship (GF) is the prototype of a new Supertask paradigm designed to model how humans and artificial agents adapt to shifting environment demands. Grounded in cognitive neuroscience, computational psychiatry, economics, and artificial intelligence, Supertasks combine computational neurocognitive modeling with serious gaming. This creates a dynamic, multi-mission environment engineered to assess mechanisms of adaptive behavior across cognitive and social contexts. Computational parameters explain behavior and probe mechanisms by controlling the game environment. Unlike traditional tasks, GF enables neurocognitive modeling of individual differences across perceptual decisions, learning, and meta-cognitive levels. This positions GF as a flexible testbed for understanding how cognitive-affective control processes, learning styles, strategy use, and motivational shifts adapt across contexts and over time. It serves as an experimental platform for scientists, a phenotype-to-mechanism intervention for clinicians, and a training tool for players aiming to strengthen self-regulated learning, mood, and stress resilience. Online study (n = 60, ongoing) results show that GF recovers effects from traditional neuropsychological tasks (construct validity), uncovers novel patterns in how learning differs across contexts and how clinical features map onto distinct adaptations. These findings pave the way for developing in-game interventions that foster self-efficacy and agency to cope with real-world stress and uncertainty. GF builds a new adaptive ecosystem designed to accelerate science, transform clinical care, and foster individual growth. It offers a mirror and training ground where humans and machines co-develop together deeper flexibility and awareness.