MarkTechPost@AI 18小时前
NASA Releases Galileo: The Open-Source Multimodal Model Advancing Earth Observation and Remote Sensing
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Galileo是一款由多所知名大学和机构联合开发的开源多模态基础模型,旨在规模化处理、分析和理解多样化的地球观测数据,包括光学、雷达、高程、气候和辅助地图等。该模型基于Vision Transformer架构,能够灵活融合多种传感模态,并能识别从1-2像素大小的渔船到冰川等广阔、缓慢变化的特征。Galileo通过结合全局和局部损失的自监督预训练算法,实现了多尺度特征的有效学习,使其在各种下游任务中表现出色,并已在11个数据集和15个任务上进行了基准测试,取得了优异的通用化能力。其开源特性和在农业、灾害响应及环境监测等领域的实际应用潜力,预示着将在地球系统科学领域引发新一轮创新。

🌍 **多模态数据融合与通用性:** Galileo模型基于Vision Transformer架构,能够无缝处理和融合包括光学、雷达、高程、气候数据以及土地覆盖图等多源异构的地球观测数据。其独特的局部和全局特征学习机制,使其能够同时识别微小目标(如渔船)和宏观地貌变化(如冰川),实现了对不同尺度和类型地球观测数据的深度理解和分析,超越了以往仅限于单一数据类型或尺度的模型。

💡 **创新的自监督预训练策略:** Galileo的核心创新之一在于其自监督预训练算法,该算法巧妙地结合了关注广阔时空背景的“全局损失”和强调细微之处的“局部损失”。全局任务旨在学习大范围、缓慢变化的特征,而局部任务则侧重于捕捉快速变化或微小目标的敏感性。这种双目标训练策略显著提升了模型的多尺度特征表示能力,使其在有限标签数据的情况下也能保持良好的泛化性和鲁棒性。

🚀 **全球覆盖与多样化预训练:** 为了确保模型在不同地理区域和地貌类型上的有效性,Galileo的预训练数据集覆盖了全球范围,并通过聚类方法进行采样,以最大化土地覆盖的多样性和地理分布的广泛性。该数据集包含超过127,000个时空对齐的样本,涵盖了四种类别和九种遥感数据类型,并在大规模计算资源上进行了长达500个训练周期。这种全面的预训练确保了Galileo的广泛适用性。

🏆 **卓越的基准测试表现与广泛应用:** Galileo在11个多样化的下游任务和15个数据集上进行了基准测试,包括图像和像素时间序列分类以及分割任务,并在EuroSat、BigEarthNet、So2Sat、MADOS、Sen1Floods11和CropHarvest等多个公开数据集上取得了领先的性能。模型展现了卓越的通用化能力,能够超越专门针对特定任务或数据模态的模型。其开源权重和代码使其能够赋能全球遥感社区,支持NASA Harvest的全球作物类型测绘、快速灾害测绘(洪水、野火)以及海洋污染检测等关键任务,对促进粮食安全和气候适应具有重要意义。

Introduction

Galileo is an open-source, highly multimodal foundation model developed to process, analyze, and understand diverse Earth observation (EO) data streams—including optical, radar, elevation, climate, and auxiliary maps—at scale. Galileo is developed with the support from researchers from McGill University, NASA Harvest Ai2, Carleton University, University of British Columbia, Vector Institute, and Arizona State University. Galileo aims to provide a unified, generalist solution for critical applications like agricultural land mapping, disaster response, and environmental monitoring.

In contrast to prior remote sensing models limited to a single data type or scale, Galileo flexibly fuses multiple sensing modalities and is designed to recognize phenomena ranging from tiny objects (such as fishing boats, measuring just 1–2 pixels) to vast, slowly changing features like glaciers.

Key Features and Architecture

Multimodal Transformer Design

Galileo is based on a Vision Transformer (ViT) architecture, meticulously adapted to process:

Flexible Input Handling:
Galileo’s tokenization pipeline splits remote sensing inputs into spatial patches, timesteps, and logical channel groups. This allows the model to process images, time series, and static tabular data in a single architecture configuration.

Unified Local and Global Feature Learning

A core innovation is Galileo’s self-supervised pretraining algorithm, which combines:

Local and global objectives differ in:

This dual-objective pretraining enhances multi-scale feature representation, making Galileo generalizable across tasks and robust even with limited labels.

Pretraining Dataset and Strategy

To ensure both semantic and geographic diversity, Galileo’s pretraining dataset covers the entire globe, sampled via a clustering approach to maximize both land cover variety and geographic spread. The dataset comprises over 127,000 spatiotemporally aligned samples, each including four categories and nine remote sensing data types.

Pretraining proceeds for 500 epochs on large compute resources. Key aspects:

Benchmark Results

Superior Generalization

Galileo is benchmarked on 11 diverse datasets and 15 downstream tasks, spanning image and pixel time series classification, as well as segmentation. Specifically, it dominates on public datasets such as EuroSat, BigEarthNet, So2Sat, MADOS (marine debris), Sen1Floods11 (SAR flood mapping), CropHarvest (multimodal crop classification), and many others.

Performance Highlights of Galileo-Base (ViT-Base):

Model Flexibility:
Across all benchmarks, Galileo is the top performer overall—outclassing both image-specialized and time-series specialized competitors. Notably, small model variants (ViT-Nano, ViT-Tiny) also achieve top or near-top results, critical for resource-constrained settings.

Ablation and Input Importance

Removing any individual modality (e.g., VIIRS night lights, ERA5, Dynamic World maps) from pretraining leads to a measurable decline in performance—even on benchmarks not directly using that input type. For example, absence of VIIRS data reduces MADOS mIoU from 67.8% to 63.5%, demonstrating the value of full multimodality for feature generalization.

Open-Source and Real-World Impact

Technical Summary Table

ModelParamsTasks SupportedRank (Lower=Better)Input Modalities
Galileo-Base85MImages, Time Series1 (overall)Optical, SAR, Weather, etc.
Specialist SOTAvariesUsually 1 or 2 types3–10Limited

Galileo-Base: consistently superior performance and flexibility across all major EO benchmarks.

Conclusion

Galileo’s methodological and engineering advances—multimodal inputs, multi-scale local-global feature learning, and large-scale globally diverse pretraining—set a new standard for generalist remote sensing AI. Its flexibility underpins practical deployments from environmental monitoring to climate resilience, offering reliable, high-quality maps and predictions regardless of the task or geography.

With open-source access and active development, Galileo is positioned to catalyze a new wave of innovation in earth system science, empowering practitioners everywhere.


Check out the PaperModel and Technical Blog. Feel free to check out our GitHub Page for Tutorials, Codes and Notebooks. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

The post NASA Releases Galileo: The Open-Source Multimodal Model Advancing Earth Observation and Remote Sensing appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Galileo 地球观测 遥感 多模态模型 人工智能
相关文章