MarkTechPost@AI 16小时前
7 Essential Layers for Building Real-World AI Agents in 2025: A Comprehensive Framework
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

构建真正的自主AI系统,需要超越简单的提示工程,而是构建一个包含多个紧密集成的组件的全栈解决方案。本文提出的七层框架,为AI代理开发提供了一个经过实战检验的思维模型。从用户交互的体验层,到信息收集的发现层,再到定义行为的代理构成层,以及核心的推理规划层,代理通过工具API层与外界互动,并通过记忆反馈层进行学习和优化。最后,强大的基础设施层保障了系统的可扩展性和安全性。遵循此框架,可以构建出能够感知、规划、行动、学习和扩展的下一代AI系统。

✨ **体验层 (Experience Layer)**: 这是人类与AI代理的交互界面,定义了对话、语音、图像或多模态等多种互动方式。其核心挑战在于将模糊的人类目标转化为机器可理解的指令,并提供清晰的反馈,确保用户体验的直观和便捷。

🔍 **发现层 (Discovery Layer)**: 代理需要具备自主获取信息的能力,包括网络搜索、文档检索、数据挖掘和传感器集成等。该层旨在高效、可靠地收集与当前任务相关的上下文信息,并过滤掉无关内容,从而为代理的决策提供支持。

🧠 **推理与规划层 (Reasoning & Planning Layer)**: 作为代理的核心“大脑”,此层负责逻辑判断、决策制定、推理和行动排序。代理在此层评估信息、权衡利弊、规划步骤并调整策略,旨在实现超越模式匹配的真正适应性智能。

🛠️ **工具与API层 (Tool & API Layer)**: 该层使代理能够执行实际操作,如执行代码、调用API、控制IoT设备或管理文件。其核心挑战在于确保与外部系统交互的安全、可靠和灵活,并具备强大的错误处理和权限管理能力。

💾 **记忆与反馈层 (Memory & Feedback Layer)**: 对于需要持续学习和改进的代理,此层至关重要。它支持短期上下文回忆和长期学习,通过跟踪交互历史、存储上下文和整合用户反馈来不断优化模型和策略,实现智能的迭代升级。

Building an intelligent agent goes far beyond clever prompt engineering for language models. To create real-world, autonomous AI systems that can think, reason, act, and learn, you need to engineer a full-stack solution that orchestrates multiple tightly–integrated components. The following seven-layer framework is a battle-tested mental model for anyone serious about AI agent development—whether you’re a founder, AI engineer, or product leader.

1. Experience Layer — The Human Interface

The Experience Layer acts as the touchpoint between humans and the agent. It defines how users interact with the system: conversation (chat/web/app), voice, image, or even multimodal engagement. This layer must be intuitive, accessible, and capable of capturing user intent precisely, while providing clear feedback.

2. Discovery Layer — Information Gathering & Context

Agents need to orient themselves: knowing what to ask, where to look, and how to gather relevant information. The Discovery Layer encompasses techniques like web search, document retrieval, data mining, context collection, sensor integration, and interaction history analysis.

3. Agent Composition Layer — Structure, Goals, and Behaviors

This layer defines what the agent is and how it should behave. It includes defining the agent’s goals, its modular architecture (sub-agents, policies, roles), possible actions, ethical boundaries, and configurable behaviors.

4. Reasoning & Planning Layer — The Agent’s Brain

At the heart of autonomy, the Reasoning & Planning Layer handles logic, decision-making, inference, and action sequencing. Here, the agent evaluates information, weighs alternatives, plans steps, and adapts strategies. This layer can leverage symbolic reasoning engines, LLMs, classical AI planners, or hybrids.

5. Tool & API Layer — Acting in the World

This layer enables the agent to perform real actions: executing code, triggering APIs, controlling IoT devices, managing files, or running external workflows. The agent must safely interface with digital and (sometimes) physical systems, often requiring robust error handling, authentication, and permissions management.

6. Memory & Feedback Layer — Contextual Recall & Learning

Agents that learn and improve over time must maintain memory: tracking prior interactions, storing context, and incorporating user feedback. This layer supports both short-term contextual recall (for conversation) and long-term learning (improving models, policies, or knowledge bases).

7. Infrastructure Layer — Scaling, Orchestration, & Security

Beneath the application stack, robust infrastructure ensures the agent is available, responsive, scalable, and secure. This layer includes orchestration platforms, distributed compute, monitoring, failover, and compliance safeguards.

Key Takeaways


Feel free to check out our GitHub Page for Tutorials, Codes and Notebooks. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

The post 7 Essential Layers for Building Real-World AI Agents in 2025: A Comprehensive Framework appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI代理 全栈解决方案 智能系统 框架 自主AI
相关文章