cs.AI updates on arXiv.org 23小时前
Foundations of Interpretable Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出当前可解释性定义不具操作性,并提出了一个通用、简单且包含现有非正式概念的新的可解释性定义,为设计可解释模型提供指导,并引入了首个开源库支持可解释数据结构。

arXiv:2508.00545v1 Announce Type: cross Abstract: We argue that existing definitions of interpretability are not actionable in that they fail to inform users about general, sound, and robust interpretable model design. This makes current interpretability research fundamentally ill-posed. To address this issue, we propose a definition of interpretability that is general, simple, and subsumes existing informal notions within the interpretable AI community. We show that our definition is actionable, as it directly reveals the foundational properties, underlying assumptions, principles, data structures, and architectural features necessary for designing interpretable models. Building on this, we propose a general blueprint for designing interpretable models and introduce the first open-sourced library with native support for interpretable data structures and processes.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

可解释性 模型设计 开源库
相关文章