arXiv:2508.00307v1 Announce Type: cross Abstract: We introduce a U-net model for 360{\deg} acoustic source localization formulated as a spherical semantic segmentation task. Rather than regressing discrete direction-of-arrival (DoA) angles, our model segments beamformed audio maps (azimuth and elevation) into regions of active sound presence. Using delay-and-sum (DAS) beamforming on a custom 24-microphone array, we generate signals aligned with drone GPS telemetry to create binary supervision masks. A modified U-Net, trained on frequency-domain representations of these maps, learns to identify spatially distributed source regions while addressing class imbalance via the Tversky loss. Because the network operates on beamformed energy maps, the approach is inherently array-independent and can adapt to different microphone configurations without retraining from scratch. The segmentation outputs are post-processed by computing centroids over activated regions, enabling robust DoA estimates. Our dataset includes real-world open-field recordings of a DJI Air 3 drone, synchronized with 360{\deg} video and flight logs across multiple dates and locations. Experimental results show that U-net generalizes across environments, providing improved angular precision, offering a new paradigm for dense spatial audio understanding beyond traditional Sound Source Localization (SSL).