arXiv:2508.00140v1 Announce Type: cross Abstract: Systems relying on ML have become ubiquitous, but so has biased behavior within them. Research shows that bias significantly affects stakeholders' trust in systems and how they use them. Further, stakeholders of different backgrounds view and trust the same systems differently. Thus, how ML models' behavior is explained plays a key role in comprehension and trust. We survey explainability visualizations, creating a taxonomy of design characteristics. We conduct user studies to evaluate five state-of-the-art visualization tools (LIME, SHAP, CP, Anchors, and ELI5) for model explainability, measuring how taxonomy characteristics affect comprehension, bias perception, and trust for non-expert ML users. Surprisingly, we find an inverse relationship between comprehension and trust: the better users understand the models, the less they trust them. We investigate the cause and find that this relationship is strongly mediated by bias perception: more comprehensible visualizations increase people's perception of bias, and increased bias perception reduces trust. We confirm this relationship is causal: Manipulating explainability visualizations to control comprehension, bias perception, and trust, we show that visualization design can significantly (p