arXiv:2508.00668v1 Announce Type: cross Abstract: As quantum information science advances and the need for pre-college engagement grows, a critical question remains: How can young learners be prepared to participate in a field so radically different from what they have encountered before? This paper argues that meeting this challenge will require strong interdisciplinary collaboration with the Learning Sciences (LS), a field dedicated to understanding how people learn and designing theory-guided environments to support learning. Drawing on lessons from previous STEM education efforts, we discuss two key contributions of the learning sciences to quantum information science (QIS) education. The first is design-based research, the signature methodology of learning sciences, which can inform the development, refinement, and scaling of effective QIS learning experiences. The second is a framework for reshaping how learners reason about, learn and participate in QIS practices through shifts in knowledge representations that provide new forms of engagement and associated learning. We call for a two-way partnership between quantum information science and the learning sciences, one that not only supports learning in quantum concepts and practices but also improves our understanding of how to teach and support learning in highly complex domains. We also consider potential questions involved in bridging these disciplinary communities and argue that the theoretical and practical benefits justify the effort.