arXiv:2409.10028v2 Announce Type: replace-cross Abstract: We introduce AttnMod, a training-free technique that modulates cross-attention in pre-trained diffusion models to generate novel, unpromptable art styles. The method is inspired by how a human artist might reinterpret a generated image, for example by emphasizing certain features, dispersing color, twisting silhouettes, or materializing unseen elements. AttnMod simulates this intent by altering how the text prompt conditions the image through attention during denoising. These targeted modulations enable diverse stylistic transformations without changing the prompt or retraining the model, and they expand the expressive capacity of text-to-image generation.