cs.AI updates on arXiv.org 08月04日 12:27
AttnMod: Attention-Based New Art Styles
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为AttnMod的无监督技术,通过调制预训练扩散模型的交叉注意力来生成新颖的艺术风格,模拟艺术家对图像的再诠释,扩展了文本到图像生成的表达能力。

arXiv:2409.10028v2 Announce Type: replace-cross Abstract: We introduce AttnMod, a training-free technique that modulates cross-attention in pre-trained diffusion models to generate novel, unpromptable art styles. The method is inspired by how a human artist might reinterpret a generated image, for example by emphasizing certain features, dispersing color, twisting silhouettes, or materializing unseen elements. AttnMod simulates this intent by altering how the text prompt conditions the image through attention during denoising. These targeted modulations enable diverse stylistic transformations without changing the prompt or retraining the model, and they expand the expressive capacity of text-to-image generation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AttnMod 交叉注意力 艺术风格生成 文本到图像 扩散模型
相关文章