arXiv:2508.00028v1 Announce Type: cross Abstract: Spectrum resources are often underutilized across time and space, motivating dynamic spectrum access strategies that allow secondary users to exploit unused frequencies. A key challenge is predicting when and where spectrum will be available (i.e., unused by primary licensed users) in order to enable proactive and interference-free access. This paper proposes a scalable framework for spectrum availability prediction that combines a two-state Markov chain model of primary user activity with high-fidelity propagation models from the ITU-R (specifically Recommendations P.528 and P.2108). The Markov chain captures temporal occupancy patterns, while the propagation models incorporate path loss and clutter effects to determine if primary signals exceed interference thresholds at secondary user locations. By integrating these components, the proposed method can predict spectrum opportunities both in time and space with improved accuracy. We develop the system model and algorithm for the approach, analyze its scalability and computational efficiency, and discuss assumptions, limitations, and potential applications. The framework is flexible and can be adapted to various frequency bands and scenarios. The results and analysis show that the proposed approach can effectively identify available spectrum with low computational cost, making it suitable for real-time spectrum management in cognitive radio networks and other dynamic spectrum sharing systems.