cs.AI updates on arXiv.org 前天 12:27
Transparent Adaptive Learning via Data-Centric Multimodal Explainable AI
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种融合传统可解释AI技术和生成AI模型的混合框架,旨在通过数据驱动个性化学习体验,提高教育AI系统的透明度和用户参与度。

arXiv:2508.00665v1 Announce Type: new Abstract: Artificial intelligence-driven adaptive learning systems are reshaping education through data-driven adaptation of learning experiences. Yet many of these systems lack transparency, offering limited insight into how decisions are made. Most explainable AI (XAI) techniques focus on technical outputs but neglect user roles and comprehension. This paper proposes a hybrid framework that integrates traditional XAI techniques with generative AI models and user personalisation to generate multimodal, personalised explanations tailored to user needs. We redefine explainability as a dynamic communication process tailored to user roles and learning goals. We outline the framework's design, key XAI limitations in education, and research directions on accuracy, fairness, and personalisation. Our aim is to move towards explainable AI that enhances transparency while supporting user-centred experiences.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

可解释AI 教育AI 个性化学习 透明度 生成AI
相关文章