MarkTechPost@AI 前天 11:29
Google AI Releases MLE-STAR: A State-of-the-Art Machine Learning Engineering Agent Capable of Automating Various AI Tasks
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Google Cloud研究人员推出MLE-STAR,一款先进的机器学习工程自动化系统。该系统通过结合网络搜索、定向代码优化和多重检查模块,显著提升了机器学习流水线的设计和优化效率,在多项任务中表现超越现有AI代理甚至人类专家。MLE-STAR解决了现有AI在模型选择局限性、粗粒度迭代、错误处理和数据泄露等方面的痛点,通过搜索获取最新模型、进行细致的代码迭代、优化集成策略以及内置的鲁棒性检查,实现了性能的大幅飞跃,为机器学习工程的自动化开辟了新道路。

🌟 **网络搜索驱动模型选择**:MLE-STAR打破了仅依赖内部知识的局限,通过实时网络搜索获取最新的模型和代码片段,确保其解决方案基于当前最佳实践,而非过时信息。

🔄 **嵌套式代码精炼**:该系统采用两层优化循环,首先通过剥离研究确定影响性能的关键组件,然后针对该组件进行深入迭代和测试,实现对流水线各环节的精细化改进,例如对特征工程的深入探索。

🤝 **自适应集成策略**:MLE-STAR不仅是简单地选择最佳模型,更通过其规划能力探索高级集成方法,如堆叠模型、自定义元学习器和优化权重搜索,以更智能地组合多个解决方案。

🛡️ **专业化检查模块**:内置的调试代理、数据泄露检测器和数据使用检测器,能够自动纠正代码错误,防止信息泄露,并确保充分利用所有数据,从而大幅提升模型性能和泛化能力。

MLE-STAR (Machine Learning Engineering via Search and Targeted Refinement) is a state-of-the-art agent system developed by Google Cloud researchers to automate complex machine learning ML pipeline design and optimization. By leveraging web-scale search, targeted code refinement, and robust checking modules, MLE-STAR achieves unparalleled performance on a range of machine learning engineering tasks—significantly outperforming previous autonomous ML agents and even human baseline methods.

The Problem: Automating Machine Learning Engineering

While large language models (LLMs) have made inroads into code generation and workflow automation, existing ML engineering agents struggle with:

MLE-STAR: Core Innovations

MLE-STAR introduces several key advances over prior solutions:

1. Web Search–Guided Model Selection

Instead of drawing solely from its internal “training,” MLE-STAR uses external search to retrieve state-of-the-art models and code snippets relevant to the provided task and dataset. It anchors the initial solution in current best practices, not just what LLMs “remember”.

2. Nested, Targeted Code Refinement

MLE-STAR improves its solutions via a two-loop refinement process:

This enables deep, component-wise exploration—e.g., extensively testing ways to extract and encode categorical features rather than blindly changing everything at once.

3. Self-Improving Ensembling Strategy

MLE-STAR proposes, implements, and refines novel ensemble methods by combining multiple candidate solutions. Rather than just “best-of-N” voting or simple averages, it uses its planning abilities to explore advanced strategies (e.g., stacking with bespoke meta-learners or optimized weight search).

4. Robustness through Specialized Agents

Quantitative Results: Outperforming the Field

MLE-STAR’s effectiveness is rigorously validated on the MLE-Bench-Lite benchmark (22 challenging Kaggle competitions spanning tabular, image, audio, and text tasks):

MetricMLE-STAR (Gemini-2.5-Pro)AIDE (Best Baseline)
Any Medal Rate63.6%25.8%
Gold Medal Rate36.4%12.1%
Above Median83.3%39.4%
Valid Submission100%78.8%

Technical Insights: Why MLE-STAR Wins

Extensibility and Human-in-the-loop

MLE-STAR is also extensible:

Conclusion

MLE-STAR represents a true leap in the automation of machine learning engineering. By enforcing a workflow that begins with search, tests code via ablation-driven loops, blends solutions with adaptive ensembling, and polices code outputs with specialized agents, it outperforms prior art and even many human competitors. Its open-source codebase means that researchers and ML practitioners can now integrate and extend these state-of-the-art capabilities in their own projects, accelerating both productivity and innovation.


Check out the Paper, GitHub Page and Technical details. Feel free to check out our GitHub Page for Tutorials, Codes and Notebooks. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

The post Google AI Releases MLE-STAR: A State-of-the-Art Machine Learning Engineering Agent Capable of Automating Various AI Tasks appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MLE-STAR 机器学习工程 自动化 AI代理 Google Cloud
相关文章