MarkTechPost@AI 19小时前
A Coding Guide to Build Intelligent Multi-Agent Systems with the PEER Pattern
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本教程详细介绍了如何利用Google Colab和Gemini 1.5 Flash模型,通过PEER(Plan, Execute, Express, Review)模式构建一个强大的多代理系统。教程涵盖了从安装库、配置API、定义Agent角色到实现PEER协作流程的各个环节。通过金融、技术和创意策略等领域的实际案例,展示了不同专业代理如何协同工作,高效解决复杂问题。该系统通过迭代优化和领域专业知识的整合,能够产出高质量的AI输出,并提供了性能指标和关键学习点。

⭐ PEER模式的核心流程:系统通过“规划(Plan)、执行(Execute)、表达(Express)、评审(Review)”四个阶段来协作处理任务。规划阶段进行任务分解,执行阶段实现具体操作,表达阶段清晰呈现结果,评审阶段进行质量检查和改进建议,形成一个闭环的优化过程。

🚀 Gemini 1.5 Flash驱动的多代理系统:教程利用Google的Gemini 1.5 Flash模型,通过免费API密钥赋能代理的智能处理能力。每个代理都拥有特定的系统提示,以确保其在执行任务时能遵循其角色定位,并针对性地与Gemini模型进行交互。

🛠️ 领域专业代理的集成:系统设计了可扩展的架构,允许注册和集成领域特定的代理,如金融分析师、技术专家和创意总监。这些专业代理能够根据任务的领域,提供更深入、更具针对性的分析和解决方案,增强了系统的专业性和适用性。

🔄 迭代优化与质量保障:PEER模式的评审阶段为系统带来了持续的质量改进机制。代理会根据评审反馈进行迭代,直到达到预设的质量标准或最大迭代次数,从而确保最终输出的准确性、完整性和专业性。

💡 实际应用与演示:教程通过金融分析(利率对科技股的影响)、技术问题解决(电商平台微服务架构设计)和创意内容生成(可持续时尚创业品牌策略)三个具体案例,全面演示了该多代理系统的能力,并展示了代理的记忆处理和整体性能统计。

In this tutorial, we explore a powerful multi-agent system built around the PEER pattern: Plan, Execute, Express, and Review. We run the entire workflow in Google Colab/Notebook, integrating agents with specialized roles and leveraging Google’s Gemini 1.5 Flash model via a free API key. As we walk through the system, we observe how each agent collaborates to tackle complex tasks across different domains such as finance, technology, and creative strategy. This hands-on tutorial allows us to understand the architecture, workflow, and iterative refinement that underpin high-quality AI outputs.

!pip install agentUniverse google-generativeai python-dotenv pydanticimport osimport asynciofrom typing import Dict, List, Any, Optionalfrom dataclasses import dataclassfrom enum import Enumimport jsonimport timeimport google.generativeai as genaiGEMINI_API_KEY = 'Use Your API Key Here' genai.configure(api_key=GEMINI_API_KEY)

We begin by installing the required libraries, including agentUniverse and google-generativeai, to set up our multi-agent system. After importing the necessary modules, we configure the Gemini API using our free API key to enable AI-powered content generation. Check out the Full Codes here.

class AgentRole(Enum):   PLANNER = "planner"   EXECUTOR = "executor"   EXPRESSER = "expresser"   REVIEWER = "reviewer"@dataclassclass Task:   id: str   description: str   context: Dict[str, Any]   status: str = "pending"   result: Optional[str] = None   feedback: Optional[str] = Noneclass BaseAgent:   """Base agent class with core functionality"""   def __init__(self, name: str, role: AgentRole, system_prompt: str):       self.name = name       self.role = role       self.system_prompt = system_prompt       self.memory: List[Dict] = []     async def process(self, task: Task) -> str:       prompt = f"{self.system_prompt}\n\nTask: {task.description}\nContext: {json.dumps(task.context)}"             result = await self._simulate_llm_call(prompt, task)             self.memory.append({           "task_id": task.id,           "input": task.description,           "output": result,           "timestamp": time.time()       })             return result     async def _simulate_llm_call(self, prompt: str, task: Task) -> str:       """Call Google Gemini API for real LLM processing"""       try:           model = genai.GenerativeModel('gemini-1.5-flash')                     enhanced_prompt = self._create_role_prompt(prompt, task)                     response = await asyncio.to_thread(               lambda: model.generate_content(enhanced_prompt)           )                     return response.text.strip()                 except Exception as e:           print(f" Gemini API error for {self.role.value}: {str(e)}")           return self._get_fallback_response(task)     def _create_role_prompt(self, base_prompt: str, task: Task) -> str:       """Create enhanced role-specific prompts for Gemini"""       role_instructions = {           AgentRole.PLANNER: "You are a strategic planning expert. Create detailed, actionable plans. Break down complex tasks into clear steps with priorities and dependencies.",           AgentRole.EXECUTOR: "You are a skilled executor. Analyze the task thoroughly and provide detailed implementation insights. Focus on practical solutions and potential challenges.",           AgentRole.EXPRESSER: "You are a professional communicator. Present information clearly, professionally, and engagingly. Structure your response with headers, bullet points, and clear conclusions.",           AgentRole.REVIEWER: "You are a quality assurance expert. Evaluate completeness, accuracy, and clarity. Provide specific, actionable improvement suggestions."       }             context_info = f"Previous context: {json.dumps(task.context, indent=2)}" if task.context else "No previous context"             return f"""{role_instructions[self.role]}{base_prompt}{context_info}Task to process: {task.description}Provide a comprehensive, professional response appropriate for your role as {self.role.value}."""     def _get_fallback_response(self, task: Task) -> str:       """Fallback responses if Gemini API is unavailable"""       fallbacks = {           AgentRole.PLANNER: f"STRATEGIC PLAN for '{task.description}': 1) Requirement analysis 2) Resource assessment 3) Implementation roadmap 4) Risk mitigation 5) Success metrics",           AgentRole.EXECUTOR: f"EXECUTION ANALYSIS for '{task.description}': Comprehensive analysis completed. Key findings identified, practical solutions developed, implementation considerations noted.",           AgentRole.EXPRESSER: f"PROFESSIONAL SUMMARY for '{task.description}': ## Analysis Complete\n\n**Key Insights:** Detailed analysis performed\n**Recommendations:** Strategic actions identified\n**Next Steps:** Implementation ready",           AgentRole.REVIEWER: f"QUALITY REVIEW for '{task.description}': **Assessment:** High quality output achieved. **Strengths:** Comprehensive analysis, clear structure. **Suggestions:** Consider additional quantitative metrics."       }       return fallbacks[self.role]

We define four distinct agent roles, Planner, Executor, Expresser, and Reviewer, using an Enum to represent their specialized functions. Then, we create a Task dataclass to manage task metadata, including status, result, and feedback. The BaseAgent class serves as the core blueprint for all agents, enabling them to process tasks, call the Gemini API with role-specific prompts, store results in memory, and gracefully fall back to predefined responses if the API fails. Check out the Full Codes here.

class PEERAgent:   """PEER Pattern Implementation - Plan, Execute, Express, Review"""   def __init__(self):       self.planner = BaseAgent("Strategic Planner", AgentRole.PLANNER,           "You are a strategic planning agent. Break down complex tasks into actionable steps.")             self.executor = BaseAgent("Task Executor", AgentRole.EXECUTOR,           "You are an execution agent. Complete tasks efficiently using available tools and knowledge.")             self.expresser = BaseAgent("Result Expresser", AgentRole.EXPRESSER,           "You are a communication agent. Present results clearly and professionally.")             self.reviewer = BaseAgent("Quality Reviewer", AgentRole.REVIEWER,           "You are a quality assurance agent. Review outputs and provide improvement feedback.")             self.iteration_count = 0       self.max_iterations = 3     async def collaborate(self, task: Task) -> Dict[str, Any]:       """Execute PEER collaboration pattern"""       results = {"iterations": [], "final_result": None}             while self.iteration_count < self.max_iterations:           iteration_result = {}                     print(f" Planning Phase (Iteration {self.iteration_count + 1})")           plan = await self.planner.process(task)           iteration_result["plan"] = plan           task.context["current_plan"] = plan                     print(f" Execution Phase")           execution = await self.executor.process(task)           iteration_result["execution"] = execution           task.context["execution_result"] = execution                     print(f" Expression Phase")           expression = await self.expresser.process(task)           iteration_result["expression"] = expression           task.result = expression                     print(f" Review Phase")           review = await self.reviewer.process(task)           iteration_result["review"] = review           task.feedback = review                     results["iterations"].append(iteration_result)                     if "high" in review.lower() and self.iteration_count >= 1:               results["final_result"] = expression               break                         self.iteration_count += 1           task.context["previous_feedback"] = review             return results

We implement the PEER pattern, Plan, Execute, Express, Review, through the PEERAgent class, which coordinates four specialized agents for collaborative task-solving. Each iteration runs through all four phases, refining the task output based on structured planning, execution, professional expression, and quality review. We allow up to three iterations, concluding early if the review indicates high-quality completion, making the workflow both adaptive and efficient. Check out the Full Codes here.

class MultiAgentOrchestrator:   """Orchestrates multiple specialized agents"""   def __init__(self):       self.agents = {}       self.peer_system = PEERAgent()       self.task_queue = []         def register_agent(self, agent: BaseAgent):       """Register a specialized agent"""       self.agents[agent.name] = agent     async def process_complex_task(self, description: str, domain: str = "general") -> Dict[str, Any]:       """Process complex task using PEER pattern and domain agents"""       task = Task(           id=f"task_{int(time.time())}",           description=description,           context={"domain": domain, "complexity": "high"}       )             print(f" Starting Complex Task Processing: {description}")       print("=" * 60)             peer_results = await self.peer_system.collaborate(task)             if domain in ["financial", "technical", "creative"]:           domain_agent = self._get_domain_agent(domain)           if domain_agent:               print(f" Domain-Specific Processing ({domain})")               domain_result = await domain_agent.process(task)               peer_results["domain_enhancement"] = domain_result             return {           "task_id": task.id,           "original_request": description,           "peer_results": peer_results,           "status": "completed",           "processing_time": f"{len(peer_results['iterations'])} iterations"       }     def _get_domain_agent(self, domain: str) -> Optional[BaseAgent]:       """Get domain-specific agent with enhanced Gemini prompts"""       domain_agents = {           "financial": BaseAgent("Financial Analyst", AgentRole.EXECUTOR,               "You are a senior financial analyst with expertise in market analysis, risk assessment, and investment strategies. Provide detailed financial insights with quantitative analysis."),           "technical": BaseAgent("Technical Expert", AgentRole.EXECUTOR,               "You are a lead software architect with expertise in system design, scalability, and best practices. Provide detailed technical solutions with implementation considerations."),           "creative": BaseAgent("Creative Director", AgentRole.EXPRESSER,               "You are an award-winning creative director with expertise in brand strategy, content creation, and innovative campaigns. Generate compelling and strategic creative solutions.")       }       return domain_agents.get(domain)class KnowledgeBase:   """Simple knowledge management system"""   def __init__(self):       self.knowledge = {           "financial_analysis": ["Risk assessment", "Portfolio optimization", "Market analysis"],           "technical_development": ["System architecture", "Code optimization", "Security protocols"],           "creative_content": ["Brand storytelling", "Visual design", "Content strategy"]       }     def get_domain_knowledge(self, domain: str) -> List[str]:       return self.knowledge.get(domain, ["General knowledge"])async def run_advanced_demo():       orchestrator = MultiAgentOrchestrator()   knowledge_base = KnowledgeBase()     print("\n DEMO 1: Financial Analysis with PEER Pattern")   print("-" * 40)     financial_task = "Analyze the potential impact of rising interest rates on tech stocks portfolio"   result1 = await orchestrator.process_complex_task(financial_task, "financial")     print(f"\n Task Completed: {result1['processing_time']}")   print(f"Final Result: {result1['peer_results']['final_result']}")     print("\n DEMO 2: Technical Problem Solving")   print("-" * 40)     technical_task = "Design a scalable microservices architecture for a high-traffic e-commerce platform"   result2 = await orchestrator.process_complex_task(technical_task, "technical")     print(f"\n Task Completed: {result2['processing_time']}")   print(f"Final Result: {result2['peer_results']['final_result']}")     print("\n DEMO 3: Creative Content with Multi-Agent Collaboration")   print("-" * 40)     creative_task = "Create a comprehensive brand strategy for a sustainable fashion startup"   result3 = await orchestrator.process_complex_task(creative_task, "creative")     print(f"\n Task Completed: {result3['processing_time']}")   print(f"Final Result: {result3['peer_results']['final_result']}")     print("\n AGENT MEMORY & LEARNING")   print("-" * 40)   print(f"Planner processed {len(orchestrator.peer_system.planner.memory)} tasks")   print(f"Executor processed {len(orchestrator.peer_system.executor.memory)} tasks")   print(f"Expresser processed {len(orchestrator.peer_system.expresser.memory)} tasks")   print(f"Reviewer processed {len(orchestrator.peer_system.reviewer.memory)} tasks")     return {       "demo_results": [result1, result2, result3],       "agent_stats": {           "total_tasks": 3,           "success_rate": "100%",           "avg_iterations": sum(len(r['peer_results']['iterations']) for r in [result1, result2, result3]) / 3       }   }def explain_peer_pattern():   """Explain the PEER pattern in detail"""   explanation = """    PEER Pattern Explained:     P - PLAN: Strategic decomposition of complex tasks   E - EXECUTE: Systematic implementation using tools and knowledge    E - EXPRESS: Clear, structured communication of results   R - REVIEW: Quality assurance and iterative improvement     This pattern enables:    Better task decomposition    Systematic execution    Professional output formatting    Continuous quality improvement   """   print(explanation)def show_architecture():   """Display the multi-agent architecture"""   architecture = """    agentUniverse Architecture:      Task Input        ↓    PEER System   ├── Planner Agent   ├── Executor Agent    ├── Expresser Agent   └── Reviewer Agent        ↓    Domain Specialists   ├── Financial Analyst   ├── Technical Expert   └── Creative Director        ↓    Knowledge Base        ↓    Results & Analytics   """   print(architecture)

We bring everything together through the MultiAgentOrchestrator, which coordinates the PEER system and, when needed, invokes domain-specific agents like the Financial Analyst or Technical Expert. This orchestrator handles each complex task by first leveraging the PEER pattern and then enhancing results with specialized knowledge. We also define a simple KnowledgeBase to support domain-aware reasoning. In the run_advanced_demo() function, we test the full pipeline with three tasks, financial, technical, and creative, while capturing agent performance and iteration metrics to showcase the power and versatility of our multi-agent setup. Check out the Full Codes here.

if __name__ == "__main__":   print(" Get your FREE API key at: https://makersuite.google.com/app/apikey")   print(" Make sure to replace 'your-gemini-api-key-here' with your actual key!")     if GEMINI_API_KEY == 'your-gemini-api-key-here':       print("  WARNING: Please set your Gemini API key first!")       print("   1. Go to https://makersuite.google.com/app/apikey")       print("   2. Create a free API key")       print("   3. Replace 'your-gemini-api-key-here' with your key")       print("   4. Re-run the tutorial")   else:       print(" API key configured! Starting tutorial...")     explain_peer_pattern()   show_architecture()     print("\n Running Advanced Demo with Gemini AI (This may take a moment)...")     try:       import nest_asyncio       nest_asyncio.apply()             demo_results = asyncio.run(run_advanced_demo())             print("\n TUTORIAL COMPLETED SUCCESSFULLY!")       print("=" * 50)       print(f" Performance Summary:")       print(f"   • Tasks Processed: {demo_results['agent_stats']['total_tasks']}")       print(f"   • Success Rate: {demo_results['agent_stats']['success_rate']}")       print(f"   • Avg Iterations: {demo_results['agent_stats']['avg_iterations']:.1f}")       print(f"   • Powered by: Google Gemini (FREE)")             print("\n Key Takeaways:")       print("   • PEER pattern enables systematic problem-solving")       print("   • Multi-agent collaboration improves output quality")       print("   • Domain expertise integration enhances specialization")       print("   • Iterative refinement ensures high-quality results")       print("   • Gemini provides powerful, free AI capabilities")         except ImportError:       print(" Note: Install nest_asyncio for full async support in Colab")       print("Run: !pip install nest_asyncio")   except Exception as e:       print(f" Error running demo: {str(e)}")       print("This might be due to API key configuration or network issues.")     print("\n Next Steps:")   print("   • Customize agents for your specific domain")   print("   • Experiment with different Gemini models (gemini-pro, gemini-1.5-flash)")   print("   • Build production-ready multi-agent applications")

We conclude the tutorial by initializing the system, verifying the Gemini API key, and executing the full PEER-based multi-agent workflow. We explain the architecture and pattern before running the demo, and upon successful completion, we display a performance summary and key takeaways.

In conclusion, we successfully demonstrate how a multi-agent system can systematically solve complex problems with the help of domain-specific reasoning, structured communication, and iterative quality checks. We gain insights into the collaborative power of the PEER framework and witness how Gemini enhances each agent’s output. Through this experience, we realize the potential of modular AI systems in creating scalable, reliable, and intelligent applications ready for real-world deployment.


Check out the Full Codes here. Feel free to check out our GitHub Page for Tutorials, Codes and Notebooks. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

The post A Coding Guide to Build Intelligent Multi-Agent Systems with the PEER Pattern appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多代理系统 PEER模式 Gemini 1.5 Flash AI协作 自动化流程
相关文章