cs.AI updates on arXiv.org 08月01日 12:08
Unifying Post-hoc Explanations of Knowledge Graph Completions
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出统一的知识图谱补全后解释性框架,平衡解释的有效性与简洁性,并建议改进评估协议,以促进知识图谱补全解释性研究的可重复性和影响力。

arXiv:2507.22951v1 Announce Type: new Abstract: Post-hoc explainability for Knowledge Graph Completion (KGC) lacks formalization and consistent evaluations, hindering reproducibility and cross-study comparisons. This paper argues for a unified approach to post-hoc explainability in KGC. First, we propose a general framework to characterize post-hoc explanations via multi-objective optimization, balancing their effectiveness and conciseness. This unifies existing post-hoc explainability algorithms in KGC and the explanations they produce. Next, we suggest and empirically support improved evaluation protocols using popular metrics like Mean Reciprocal Rank and Hits@$k$. Finally, we stress the importance of interpretability as the ability of explanations to address queries meaningful to end-users. By unifying methods and refining evaluation standards, this work aims to make research in KGC explainability more reproducible and impactful.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

知识图谱补全 后解释性 多目标优化 评估协议 可解释性
相关文章