cs.AI updates on arXiv.org 08月01日 12:08
Role-Aware Language Models for Secure and Contextualized Access Control in Organizations
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨大型语言模型在企业管理中的应用,研究基于用户角色的模型行为控制,提出三种建模策略,并构建两个数据集评估模型性能,分析其在不同组织结构和对抗攻击下的鲁棒性。

arXiv:2507.23465v1 Announce Type: cross Abstract: As large language models (LLMs) are increasingly deployed in enterprise settings, controlling model behavior based on user roles becomes an essential requirement. Existing safety methods typically assume uniform access and focus on preventing harmful or toxic outputs, without addressing role-specific access constraints. In this work, we investigate whether LLMs can be fine-tuned to generate responses that reflect the access privileges associated with different organizational roles. We explore three modeling strategies: a BERT-based classifier, an LLM-based classifier, and role-conditioned generation. To evaluate these approaches, we construct two complementary datasets. The first is adapted from existing instruction-tuning corpora through clustering and role labeling, while the second is synthetically generated to reflect realistic, role-sensitive enterprise scenarios. We assess model performance across varying organizational structures and analyze robustness to prompt injection, role mismatch, and jailbreak attempts.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 角色权限控制 模型行为控制 数据集评估 鲁棒性
相关文章