cs.AI updates on arXiv.org 08月01日 12:08
SUB: Benchmarking CBM Generalization via Synthetic Attribute Substitutions
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出SUB基准,用于评估概念瓶颈模型在概念变化下的鲁棒性,通过精细的图像和概念生成方法,推动AI应用透明度和可靠性。

arXiv:2507.23784v1 Announce Type: cross Abstract: Concept Bottleneck Models (CBMs) and other concept-based interpretable models show great promise for making AI applications more transparent, which is essential in fields like medicine. Despite their success, we demonstrate that CBMs struggle to reliably identify the correct concepts under distribution shifts. To assess the robustness of CBMs to concept variations, we introduce SUB: a fine-grained image and concept benchmark containing 38,400 synthetic images based on the CUB dataset. To create SUB, we select a CUB subset of 33 bird classes and 45 concepts to generate images which substitute a specific concept, such as wing color or belly pattern. We introduce a novel Tied Diffusion Guidance (TDG) method to precisely control generated images, where noise sharing for two parallel denoising processes ensures that both the correct bird class and the correct attribute are generated. This novel benchmark enables rigorous evaluation of CBMs and similar interpretable models, contributing to the development of more robust methods. Our code is available at https://github.com/ExplainableML/sub and the dataset at http://huggingface.co/datasets/Jessica-bader/SUB.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

概念瓶颈模型 SUB基准 图像生成 AI透明度
相关文章