cs.AI updates on arXiv.org 前天 12:08
Deep Learning Approaches for Multimodal Intent Recognition: A Survey
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文综述了深度学习在意图识别领域的应用,从单模态到多模态技术转变,探讨相关数据集、方法、应用及当前挑战,为研究者提供多模态意图识别(MIR)的最新进展及未来研究方向。

arXiv:2507.22934v1 Announce Type: cross Abstract: Intent recognition aims to identify users' underlying intentions, traditionally focusing on text in natural language processing. With growing demands for natural human-computer interaction, the field has evolved through deep learning and multimodal approaches, incorporating data from audio, vision, and physiological signals. Recently, the introduction of Transformer-based models has led to notable breakthroughs in this domain. This article surveys deep learning methods for intent recognition, covering the shift from unimodal to multimodal techniques, relevant datasets, methodologies, applications, and current challenges. It provides researchers with insights into the latest developments in multimodal intent recognition (MIR) and directions for future research.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

意图识别 深度学习 多模态 Transformer MIR
相关文章