cs.AI updates on arXiv.org 前天 12:08
Large Language Models in the Travel Domain: An Industrial Experience
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过工业案例研究,探讨了将大型语言模型(LLMs)应用于住宿预订平台,以提升住宿信息的一致性和可靠性,并比较了两种LLMs在效率和准确性方面的表现。

arXiv:2507.22910v1 Announce Type: cross Abstract: Online property booking platforms are widely used and rely heavily on consistent, up-to-date information about accommodation facilities, often sourced from third-party providers. However, these external data sources are frequently affected by incomplete or inconsistent details, which can frustrate users and result in a loss of market. In response to these challenges, we present an industrial case study involving the integration of Large Language Models (LLMs) into CALEIDOHOTELS, a property reservation platform developed by FERVENTO. We evaluate two well-known LLMs in this context: Mistral 7B, fine-tuned with QLoRA, and Mixtral 8x7B, utilized with a refined system prompt. Both models were assessed based on their ability to generate consistent and homogeneous descriptions while minimizing hallucinations. Mixtral 8x7B outperformed Mistral 7B in terms of completeness (99.6% vs. 93%), precision (98.8% vs. 96%), and hallucination rate (1.2% vs. 4%), producing shorter yet more concise content (249 vs. 277 words on average). However, this came at a significantly higher computational cost: 50GB VRAM and $1.61/hour versus 5GB and $0.16/hour for Mistral 7B. Our findings provide practical insights into the trade-offs between model quality and resource efficiency, offering guidance for deploying LLMs in production environments and demonstrating their effectiveness in enhancing the consistency and reliability of accommodation data.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 住宿预订平台 数据一致性
相关文章