cs.AI updates on arXiv.org 前天 12:08
A survey of multi-agent geosimulation methodologies: from ABM to LLM
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文全面审视了基于代理的多智能体系统、模拟和信息系统的原理及联系,提出适用于地理模拟平台的框架,并证实大型语言模型(LLM)可作为代理组件有效整合,为下一代地理模拟系统提供坚实基础。

arXiv:2507.23694v1 Announce Type: cross Abstract: We provide a comprehensive examination of agent-based approaches that codify the principles and linkages underlying multi-agent systems, simulations, and information systems. Based on two decades of study, this paper confirms a framework intended as a formal specification for geosimulation platforms. Our findings show that large language models (LLMs) can be effectively incorporated as agent components if they follow a structured architecture specific to fundamental agent activities such as perception, memory, planning, and action. This integration is precisely consistent with the architecture that we formalize, providing a solid platform for next-generation geosimulation systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多智能体系统 地理模拟平台 大型语言模型 代理组件 地理信息系统
相关文章