cs.AI updates on arXiv.org 08月01日 12:08
OptiGradTrust: Byzantine-Robust Federated Learning with Multi-Feature Gradient Analysis and Reinforcement Learning-Based Trust Weighting
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出OptiGradTrust框架,通过新型指纹和混合RL-attention模块提升联邦学习安全防御,有效应对数据异构问题,在多个数据集上测试表现优异。

arXiv:2507.23638v1 Announce Type: cross Abstract: Federated Learning (FL) enables collaborative model training across distributed medical institutions while preserving patient privacy, but remains vulnerable to Byzantine attacks and statistical heterogeneity. We present OptiGradTrust, a comprehensive defense framework that evaluates gradient updates through a novel six-dimensional fingerprint including VAE reconstruction error, cosine similarity metrics, $L_2$ norm, sign-consistency ratio, and Monte Carlo Shapley value, which drive a hybrid RL-attention module for adaptive trust scoring. To address convergence challenges under data heterogeneity, we develop FedBN-Prox (FedBN-P), combining Federated Batch Normalization with proximal regularization for optimal accuracy-convergence trade-offs. Extensive evaluation across MNIST, CIFAR-10, and Alzheimer's MRI datasets under various Byzantine attack scenarios demonstrates significant improvements over state-of-the-art defenses, achieving up to +1.6 percentage points over FLGuard under non-IID conditions while maintaining robust performance against diverse attack patterns through our adaptive learning approach.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦学习 安全防御 数据异构
相关文章