cs.AI updates on arXiv.org 08月01日 12:08
Personalized Education with Ranking Alignment Recommendation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

针对个性化问题推荐,提出 Ranking Alignment Recommendation(RAR)模型,改进探索机制,提升推荐性能,适用于任何基于强化学习的问答推荐。

arXiv:2507.23664v1 Announce Type: new Abstract: Personalized question recommendation aims to guide individual students through questions to enhance their mastery of learning targets. Most previous methods model this task as a Markov Decision Process and use reinforcement learning to solve, but they struggle with efficient exploration, failing to identify the best questions for each student during training. To address this, we propose Ranking Alignment Recommendation (RAR), which incorporates collaborative ideas into the exploration mechanism, enabling more efficient exploration within limited training episodes. Experiments show that RAR effectively improves recommendation performance, and our framework can be applied to any RL-based question recommender. Our code is available in https://github.com/wuming29/RAR.git.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

个性化推荐 强化学习 教育技术
相关文章