cs.AI updates on arXiv.org 07月31日 12:48
Of Good Demons and Bad Angels: Guaranteeing Safe Control under Finite Precision
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于混合精度的神经网络安全验证方法,通过将有限精度扰动考虑在内,确保神经网络在关键系统中的无限时间域安全。

arXiv:2507.22760v1 Announce Type: cross Abstract: As neural networks (NNs) become increasingly prevalent in safety-critical neural network-controlled cyber-physical systems (NNCSs), formally guaranteeing their safety becomes crucial. For these systems, safety must be ensured throughout their entire operation, necessitating infinite-time horizon verification. To verify the infinite-time horizon safety of NNCSs, recent approaches leverage Differential Dynamic Logic (dL). However, these dL-based guarantees rely on idealized, real-valued NN semantics and fail to account for roundoff errors introduced by finite-precision implementations. This paper bridges the gap between theoretical guarantees and real-world implementations by incorporating robustness under finite-precision perturbations -- in sensing, actuation, and computation -- into the safety verification. We model the problem as a hybrid game between a good Demon, responsible for control actions, and a bad Angel, introducing perturbations. This formulation enables formal proofs of robustness w.r.t. a given (bounded) perturbation. Leveraging this bound, we employ state-of-the-art mixed-precision fixed-point tuners to synthesize sound and efficient implementations, thus providing a complete end-to-end solution. We evaluate our approach on case studies from the automotive and aeronautics domains, producing efficient NN implementations with rigorous infinite-time horizon safety guarantees.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络 安全验证 混合精度 无限时间域
相关文章