cs.AI updates on arXiv.org 前天 12:48
What is an "Abstract Reasoner"? Revisiting Experiments and Arguments about Large Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文对大型语言模型在零样本设置下的表现进行了重新评估,发现通过微调输入编码参数可显著提升性能,但性能迁移性有限,引发对抽象推理能力的讨论。

arXiv:2507.22457v1 Announce Type: cross Abstract: Recent work has argued that large language models (LLMs) are not "abstract reasoners", citing their poor zero-shot performance on a variety of challenging tasks as evidence. We revisit these experiments in order to add nuance to the claim. First, we show that while LLMs indeed perform poorly in a zero-shot setting, even tuning a small subset of parameters for input encoding can enable near-perfect performance. However, we also show that this finetuning does not necessarily transfer across datasets. We take this collection of empirical results as an invitation to (re-)open the discussion of what it means to be an "abstract reasoner", and why it matters whether LLMs fit the bill.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 零样本性能 抽象推理 参数微调 数据迁移性
相关文章