cs.AI updates on arXiv.org 07月31日 12:48
From Articles to Code: On-Demand Generation of Core Algorithms from Scientific Publications
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出利用科学论文中的方法描述作为LLMs的独立规范,实现按需代码生成,替代传统软件包维护,并通过实验验证了当前LLMs在实现核心算法方面的可靠性。

arXiv:2507.22324v1 Announce Type: cross Abstract: Maintaining software packages imposes significant costs due to dependency management, bug fixes, and versioning. We show that rich method descriptions in scientific publications can serve as standalone specifications for modern large language models (LLMs), enabling on-demand code generation that could supplant human-maintained libraries. We benchmark state-of-the-art models (GPT-o4-mini-high, Gemini Pro 2.5, Claude Sonnet 4) by tasking them with implementing a diverse set of core algorithms drawn from original publications. Our results demonstrate that current LLMs can reliably reproduce package functionality with performance indistinguishable from conventional libraries. These findings foreshadow a paradigm shift toward flexible, on-demand code generation and away from static, human-maintained packages, which will result in reduced maintenance overhead by leveraging published articles as sufficient context for the automated implementation of analytical workflows.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 代码生成 软件包维护 算法实现 科学论文
相关文章